Supporting Information for

Theoretical Unimolecular Kinetics for $CH_4 + M \rightleftharpoons CH_3 + H + M$ in Eight Baths, M = He, Ne, Ar, Kr, H_2 , CO, N_2 , and CH_4

Ahren W. Jasper and James A. Miller

Combustion Research Facility, Sandia National Laboratories, PO Box 969, Livermore, CA 94551-0969, USA

- p. 2 Table S-1. Fitted intermolecular potential energy surface parameters
 - 3 Fig S-1. Pictures representative of the three $CH_4 + Rg$ approaches
 - 4 Fig S-2. Interaction energies for CH_4 + He
 - 5 Fig S-3. Interaction energies for $CH_4 + Ne$
 - 6 Fig S-4. Interaction energies for CH₄ + Ar, Kr
 - 7 Fig S-5. Interaction energies for $CH_4 + CH_4$
 - 8 Fig S-6. Interaction energies for $CH_4 + H_2$
 - 9 Fig S-7. Interaction energies for $CH_4 + H_2$
 - 10 Fig S-8. Interaction energies for $CH_4 + N_2$
 - 11 Fig S-9. Interaction energies for $CH_4 + CO$

Table S-1. Fitted intermolecular potential energy surface parameters

Lennard-Jones parameters (eq 23)

	Eit		D am ⁻¹	R', Å		
<u>M</u>	Fit	<u>Pair</u>	<i>D</i> , cm ⁻¹			
He	A	Не–Н	18.1	2.91		
	ъ	Не–С	80.0	2.66		
	В	Не–Н	6.51	2.86		
		He–C	15.9	3.16		
exp/6 parameters (eq 24)						
M	Fit	Pair	$\log_{10}(A/\mathrm{cm}^{-1})$	B, Å	<i>C</i> , Å	S, Å
He	_	Не–Н	7.550	0.2522	4.510	
		He–C	6.714	0.2884	6.167	
Ne	_	Ne-H	6.391	0.2621	5.749	
		Ne-C	7.500	0.2391	4.802	
Ar^a	_	Ar–H	6.602	0.2954	2.684	
		Ar–C	7.529	0.2772	2.663	
Kr^{a}	_	Kr–H	6.682	0.3088	2.922	
		Kr–C	7.597	0.2841	2.540	
H_2	RP	Н–Н	4.912	0.3865	6.270	2.500
		Н-С	5.140	0.4285	3.250	2.941
	R	Н–Н	5.239	0.3176	5.539	2.625
		Н-С	6.916	0.2244	5.475	2.460
	P	Н–Н	5.681	0.2772	5.453	2.553
		Н-С	6.250	0.2896	1.516	3.000
N_2	RP	N-H	6.528	0.2759	6.459	0.9430
		N-C	7.145	0.2861	0.02881	6.057
	R	N-H	6.351	0.2735	0.01758	8.710
		N-C	6.750	0.3008	8.438	2.849
	P	N-H	6.500	0.2600	4.496	3.099
		N-C	7.438	0.2652	8.188	3.050
CO	RP	С–Н	7.127	0.2261	6.562	3.285
		C–C	7.500	0.2763	1.681	7.134
		О–Н	5.000	0.3990	2.000	2.458
		O–C	6.000	0.3399	8.750	3.001
	R O-in	С–Н	6.680	0.2922	0.7389	1.451
		C–C	7.188	0.2389	8.748	2.501
		О–Н	5.000	0.4131	0.9066	8.748
		O–C	6.937	0.3032	8.985	2.293
^a Erom Alayandar: W. A.: Troya D. I. Phys. Cham. 2006, 110, 10824						

^aFrom Alexander; W. A.; Troya, D. J. Phys. Chem. **2006**, 110, 10834.

Figure S-1

Fig. S-1. Representations of the three approaches considered for the atomic baths.

Fig. S-2 (Fig. 1 in the article) CH₄ + He interaction potential for face (black), edge (red), and vertex (blue) approaches. The solid lines in all four panels are QCISD(T)/CBS energies, and the dashed lines are (a) MP2/aug'-cc-pVDZ, (b) exp/6, (c) LJ-A, and (d) LJ-B energies. The insets highlight the van der Waals wells.

Figure S-3

R_{CNe}, Å
Fig. S-3 Comparison of the QCISD(T)/CBS CH₄ + Ne interaction potential along three approaches (solid) with those for the (a) MP2/aug'-cc-pVDZ and (b) exp/6 methods (dashed). The color code for the approaches is the same as in Fig. S-2.

Figure S-4

Fig. S-4 Comparison of the QCISD(T)/CBS $CH_4 + M$ interaction potential (solid) along three approaches with those for the exp/6 method (dashed) for (a) Ar and (b) Kr. The color code for the approaches is the same as in Fig. S-2.

Figure S-5

Fig. S-5 Comparison of the QCISD(T)/CBS CH₄ + CH₄ interaction potential (solid) along three approaches (black: face-face, red: face-vertex, blue: vertex-vertex) with those for the MP2/aug'-cc-pVDZ method (dashed).

Fig. S-6 Comparison of the QCISD(T)/CBS CH₄ + H₂ interaction potential (solid) along six approaches with those for the (a,b) MP2/aug'-cc-pVDZ and (c,d) SAC/aug'-cc-pVDZ methods (dashed). The color code for the approaches is the same as in Fig. S-2. H₂ is aligned in the direction of the approach (radially) in (a,c) and perpendicular to the direction of approach in (b,d).

Fig. S-7 (Fig. 2 in the article) Comparison of the QCISD(T)/CBS CH₄ + H₂ interaction potential (solid) along six approaches with the exp/6 method for the (a,b) compromise (RP), (c,d) radial-only (R), and (e,f) perpendicular-only (P) fits (dashed). The color code for the approaches is the same as in Fig. S-2. H₂ is aligned in the direction of the approach (radially) in (a,c,e) and perpendicularly in (b,d,f).

Fig. S-8 Comparison of the QCISD(T)/CBS $CH_4 + N_2$ interaction potential (solid) along six approaches with the exp/6 method for the (a,b) compromise (RP), (c,d) radial-only (R), and (e,f) perpendicular-only (P) fits (dashed). The color code for the approaches is the same as in Fig. S-2. N_2 is aligned in the direction of the approach (radially) in (a,c,e) and perpendicularly in (b,d,f).

Fig. S-9 Comparison of the QCISD(T)/CBS CH₄ + CO interaction potential (solid) along nine approaches with the exp/6 method for the (a,b,c) compromise (RP) and (d,e,f) O-in radial-only (R) fits (dashed). The color code for the approaches is the same as in Fig. S-2. CO is aligned in the direction of the approach (radially) with C facing CH₄ in (a,d), perpendicularly in (b,e), and radially with O approaching CH₄ in (c,f).